When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.

نویسندگان

  • T Ergon
  • R Ergon
چکیده

Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic variance and phenotypic plasticity in a component of female mate choice in an ultrasonic moth.

Female response to male advertisement signals in lesser waxmoths showed substantial genetic variation, phenotypic plasticity across rearing environments, and genotype-by-environment interactions resulting in crossing reaction norms. These results represent two previously underemphasized means by which genetic variation may be maintained in sexually selected traits: genetic variation in female r...

متن کامل

Role of phenotypic plasticity and population differentiation in adaptation to novel environmental conditions

Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any ...

متن کامل

The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics.

We model the evolution of reaction norms focusing on three aspects: frequency-dependent selection arising from resource competition, maintenance and production costs of phenotypic plasticity, and three characteristics of environmental heterogeneity (frequency of environments, their intrinsic carrying capacity and the sensitivity to phenotypic maladaptation in these environments). We show that (...

متن کامل

On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection

Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life-history traits that together contribute to the adaptive phenotypes in the alternative environments. While phenotypic plasticity in general is a well-studied phenomenon, little is known about the evolutiona...

متن کامل

Parental Influences on Pathogen Resistance in Brown Trout Embryos and Effects of Outcrossing within a River Network

Phenotypic plasticity can increase tolerance to heterogeneous environments but the elevations and slopes of reaction norms are often population specific. Disruption of locally adapted reaction norms through outcrossing can lower individual viability. Here, we sampled five genetically distinct populations of brown trout (Salmo trutta) from within a river network, crossed them in a full-factorial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of evolutionary biology

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2017